
Resource Management

Karl Czajkowski



2

Prerequisites and Other Topics

We assume some knowledge of:
Job submission systems

Resource management

(We give only brief introduction.)
See GRAM/Job session at GlobusWORLD

How to use GRAM tools

How to administer GRAM

How to program using GRAM APIs

(We do not cover this today.)



3

Session Overview

Q: What is this session about?
A:We will describe the world-view behind our 

Resource Management architecture, including 
our job management services and our 
standards efforts.

Three-part discussion (~ 30 mins/each)
The nature of the Grid and our goals

Job management in GT 4.0

RM standards



Resource Management: Part 1

Grid RM goals, future, and status…



5

Why the Grid?
Origins: Revolution in Science

Pre-Internet
Theorize &/or experiment, alone
or in small teams; publish paper

Post-Internet
Construct and mine large databases 
of observational or simulation data
Develop simulations & analyses
Access specialized devices remotely
Exchange information within 
distributed multidisciplinary teams



6

Why the Grid?
New Driver: Revolution in Business

Pre-Internet
Central data processing facility

Post-Internet
Enterprise computing is highly distributed, 
heterogeneous, inter-enterprise (B2B)

Business processes increasingly 
computing- & data-rich

Outsourcing becomes feasible => 
service providers of various sorts

Growing complexity & need for
more efficient management 



7

Common eScience/eBusiness
Requirements

Dynamically link resources/services
From collaborators, customers, eUtilities, … 
(members of evolving “virtual organization”)

Into a “virtual computing system”
Dynamic, multi-faceted system spanning 
institutions and industries

Configured to meet instantaneous needs, for:
Multi-faceted QoX for demanding workloads

Security, performance, reliability, etc. 



8

Grid Resource Environment

Distributed users and resources
Variable resource status
Variable grouping and connectivity
Decentralized scheduling/policy

R
R

R
R

R

R

?

?

R

R
R

R

R R

R

R R
?

?
R

R
R

R R

dispersed users

VO-A VO-B

network



9

What Happens There?

Data generation
Specialized instruments and sensors

Data processing and simulation
Data storage

Bulk file storage and structured databases

Possible interface to instruments (buffering)
Data movement
Data processing

Compute data input to form output

Batch or interactive/coupled



10

Non-trivial Applications

Real-time or deadline-sensitive jobs
Wants localized, very good resource

Large jobs
Large and/or coupled models

Wants to coordinate a few good resources
High-throughput job sets

Many related jobs from one user/problem

Many unrelated jobs from many users

Wants scalable job control everywhere



11

Distributed Resource Management

1. Discovery
“What is out there? (of relevance) (to me)…”

Finds service providers

2. Inspection
“How do relevant providers compare?”

Compare policies, status, etc.

3. Agreement
“Will/did I get what I need?”

The core Resource Management problem

…Process can iterate due to adaptation



12

Long-term GRAM Architecture

GRAM GRAM GRAM

Application

Domain-specific goals

Incremental tasks

Information 
Service

Goal
satisfaction

Planner

Concrete plans

Coordinator

Monitor
& Discover

Local
resource
managers Job CPU Disk



13

Traditional Schedulers

Closed-System Model
Presumption of global owner/authority
Sandboxed applications with no interactions
“Toss job over the fence and wait”
Emphasis on scheduler optimization

Utilization as Primary Metric
Deep batch queues allow tighter packing
No incentives for matching user’s schedule

Sub-cultures Counter Site Policies
Users learn tricks for “gaming” their site



14

RM Mediates Conflict

Resource Consumers/Applications Goals
Users: deadlines and availability goals

Applications: need coordinated resources
Localized Resource Owner Goals

Policies distinguish users/communities
Community Goals Emerge As:

Global optimization goals

Aggregate user, application and/or resource
Reconcile demands via Agreement



15

An Open Negotiation Model

Resources in a Global Context
Advertisement and negotiation

Normalized remote client interface

Resource maintains autonomy
Users or Agents Bridge Resources

Drive task submission and provisioning

Coordinate acts across domains
Community-based Mediation

Coordination for collective interest



16

Community Schedulers

Individual users
Require service

Have application goals

Community schedulers
Broker service

Aggregate scheduling

Individual resources
Provide service to clients

Have policy autonomy

J1 J2 J3 J4 J5

S1 S2

R2 R3 R4 R5 R6R1

J1?? J3 J4 J5J2



17

Intermediaries And Policy

Scheduler
CommunityClient

Application
Resource
Manager

Resource

User Policy Resource PolicyCommunity Policy

control
request

respond

request

respond

advertise advertise

Resource virtualization can:
Abstract details of underlying resource(s)
Abstract cardinality of aggregates
Map between different resource description domains

Policies from different domains influence 
agreement negotiations with intermediaries



18

Heterogeneity of Service

Many Kinds of “Task” or delivered service
Data: stored file, data read/write, packet xfer

Compute: execution, suspended job
Many Kinds of Resource

Hardware: disks, CPU, memory, networks, 
display…

Capabilities: space, throughput…
Coordination Problem is much the same

Difficulty varies

Applicability varies



19

Reliable File Transfer

Single goal
Fast reliable transfer

Specialized scheduler
Brokers basic services

Synthesizes new service
Fault-handling logic

Virtualization
Aggregate manager

One request->many xfers

Abstracts gridFTP control

R3

S1

J3J2

J1

R1 R2



20

Technical Challenges

Complex Security Requirements
Mixed identities, rights, audit, …

Global Scalability
Similar ideals to Internet

Interoperable infrastructure

Policy-configurable for social needs
Permanence or “Evolve in Place”

Cannot take World off-line for service

Over time: upgrade, extend, adapt



21

State of the Art

Discovery is very hard and immature
Some viable information gathering systems

But information models have gaps
Lots of low-level “buttons and knobs” stuff, e.g. CIM

Some overly abstract stuff, e.g. GLUE, GRAM today

Complexity already a barrier to entry

RM policy: personalized scope/relevance
Inspection is over-emphasized

Inherent race-conditions/scalability problems
Basic allocation and “agreement” today

Implicit out-of-band intelligence still required



22

Future: Fuzzy

Examples showed different tiers
These manager tiers are illustrations

Not a claim of “proper” service topology
VOs and application-specific managers

May have deeply “recursive” nesting

May form opaque virtualization barriers
Don’t look behind the curtain

May form transparent brokers
Help resource providers and consumers to “meet”

Many front, back, and side doors for entry



Resource Management: Part 2

Job Management in GT 4.0



24

Job/Execution Duality

GRAM supports job submission
A traditional “bare metal” job to run

With some data staging requirements
GRAM supports execution management

User needs a virtual host/container

With some environment initialization
Two sides of the same coin

All job submission IS resource virtualization

Some jobs more virtualizing than others!
Run a JVM? X Windows server? User-mode Linux?



25

Globus Toolkit GRAM Strategy

Evolution via simultaneous deployment
Run multiple protocol engines per resource

Phase out old when satisfied w/ shift to new
Refactoring abstract protocol

What do messages look like
Refactoring GRAM protocol engine

How are messages processed
Refactoring secure implementation

Multi-user job service w/ safety



26

Reasonable Applications Today

High throughput job sets: two approaches
1. Use GRAM for every task

The razor’s edge of GRAM scalability

2. Use GRAM for provisioning “slaves”
Course-grain jobs handle task/transaction flow

As in Condor glide-ins

Large-scale jobs w/ MPICH-G3
Co-allocation but no co-reservation yet

Special jobs
DIY discovery/control extensions



27

GRAM Protocol Evolution

Traditional pre-WS GRAM
Custom RSL syntax, custom parser

Basic HTTP framing
OGSI GRAM (dead end for standardization)

XML based, standard parser
WS-GRAM

Simpler XML than OGSI GRAM had

WSRF consistent protocols

Direct approach, waiting for WS-Agreement



28

GRAM Implementation Evolution

Pre-WS GRAM
Custom https engine

C state machine

perl “adapter” callouts
WS-GRAM

Hosting environments' protocol engines

Java rewrite of state machine

Refined perl “adapter” callouts
Single adapter version can support both GRAM systems



29

GRAM Security Evolution

Pre-WS GRAM
gatekeeper https engine runs as root

job manager C and perl run as user
OGSI GRAM

multiple hosting environments per host

too expensive w/ current Java WS tools
WS-GRAM

non-root hosting process shared by all users

sudo callouts to GRAM user accounts

perl still runs as user



30

More WS-GRAM Improvements

More efficient job monitoring
Signal-based fork job monitoring

Log-based queueing system monitoring

No more expensive/slow polling

No more frail queue snapshot comparators
Refactored optional components

Staging of files via RFT+gridftp

Explicit delegated credential management



31

WS-GRAM Approach

GridFTP
RFT

Delegation

GridFTP

GRAM
services

local sched.

user job

compute element

compute element and service host(s)

remote storage element(s)

FTP data

FTP control

cl
ie

nt

job submit

delegate

xf
er

re
qu

es
t

local job control

delegate
GRAM
adaptersu

do



32

Staging via RFT+gridFTP

Simplified job state machine impl.
More transfer reliability and performance

Better behaviour than naïve “GASS” library

Benefit from new gridFTP servers over time
Streaming access: efficient client poll

Applies to any output, not just stdout/stderr

More robust restart/recovery for client

Introduces new namespace wrinkles



33

Explicit Credential Management

Client-controlled delegation
Completely optional

Customize for job/user requirements
Supports reuse

Delegate once, use w/ multiple jobs
Efficient and understandable

User can refresh once per remote host
Updates all jobs sharing that credential

User can choose to separate
For jobs or job sets w/ differing trust or lifecycles



34

Performance Improvements

Scalability better than GT3.x
One hosting environment instead of N

Less impact on queueing system (no polling)

Robust staging of large filesets w/ RFT
More improvements in Java XML processing

Lower CPU overhead

Better memory footprint
C-based client tool and libs

Low CPU overhead compared to Java

Low latency command-line tool startup



35

WS-GRAM Software Map

Delegation

ManagedJobFactory

ManagedJob

Delegation

ReliableFileTransfer

Job's Credential

Scheduler Adapter

authz_exec

sudo: user

sudo: schedd

delegate

createJob

terminate
subscribe

createTransfer

system exec

setRP(status)
no

tif
y

notify

subscribe

create

create

start

Implementation Objects

Scripts and Tools

ResourcesServices

Local System

Arrow Legend
Invoke
Cause/Effect
Data Flow

Local Scheduler

Job Event Daemon

Credential Writer

authz_exec

sudo: user

ManagedJob

ManagedJobFactory

Job State Monitor

JobManager

start

User Job



36

WS-GRAM Base Protocol

T F

T E

T B

T 0

T C

T Ea

T Fa

createJob

acknowledge

Client GRAM Scheduler Job

submit jobnotify: pending

notify: active

job check-in: exiting
job check-in: started

job exited

Compute

notify: complete



37

WS-GRAM Full Protocol

T B

T A

T 0

T D

T C

T Ea

T Fa

T F

T E

T G

T I

T H

T J

request transfer

GRAM RFT SchedulerDelegationClient
delegate

acknowledge

createJob

Job

Stage In

Setup

notify: stage in
acknowledge

store credential

complete

transfer complete

submit jobnotify: pending

notify: active

job check-in: exiting
job check-in: started

job exited

request transfernotify: stage out

Compute

Stage Out

transfer complete

notify: cleanup-hold

request deletion

Cleanup

Terminating

notify: complete

terminate
acknowledge

delete cred.

complete

deletion complete

notify: cleanup

removeHold(cleanup)



38

Positioning for Future

Better modularity of job manager functions
Track improvements in RFT, gridFTP

Experimentation w/ other job protocols
Share sudo/perl callouts for job control

Provide different “views” of job execution system

Reuse functions for next job standard
Higher-level WSRF programming model

Return of co-allocation for MPICH

Unconventional job-like services next?

Advance reservation or co-scheduling next?



39

Co-Allocation for MPICH

Comparable to pre-WS DUROC component
But server-side instead of client-side

Multi-job manager
Same interface pattern as for regular job

Manages multi-job aggregation
Recursively split and run regular job submits

Rendezvous support
Intra-subjob task coordination (a la 
gram_myjob)

Subjob coordination (a la DUROC 
barrier/comm.)



Resource Management: Part 3

WS-Agreement and the future…



41

WS-Agreement

New standardization effort
In GGF’s GRAAP-WG

In public comment period
Generalizes GRAM ideas

Service-oriented architecture

Resource becomes Service Provider

Tasks become Negotiated Services

State presented as Agreement services
Supports extensible domain terms



42

WS-Agreement Entities

Policy

Agreement
Ops:
setTerminationTime(limits)
findServiceData(query)
...
SDEs:

status query

(negotiate)

Consumer

Terms Related

Application Service

Status
Agrmts.

(monitor)

(invoke)

Agreement Provider

Application Service Provider

?Initiator
Agreement



43

Simple Negotiation

AgreementFactory::createAgreement()
Coarse-grained
Conventional fault/response model
Batch negotiation of complex terms
Idiom: enables one-shot job submission

Agreements can be chained
Establish stateful context of Agreements

New Agreement depends on/claims context

Need companion specs for advanced 
scenarios



44

Agreement-based Jobs

Agreement represents “queue entry”
Commitment with job parameters etc.

Agreement Provider
i.e. Job scheduler/Queuing system

Management interface to service provider
Service Provider

i.e. scheduled resource (compute nodes)
Provided Service is the Job computation



45

Advance Reservation for Jobs

Schedule-based commitment of service
Requires schedule based Agreement terms

Optional Pre-Agreement
Agreement to facilitate future Job Agreement
Characterizes virtual resource needed for Job
May not need full job terms

Job Agreement almost as usual
May exploit Pre-Agreement, or

Reference existing promise of resource schedule

May get schedule commitment in one shot



46

Virtualization and Brokers

Policy

AgreementFactory

AgreementFactory

Policy

Policy

Agreement 3
S.T. R.A.

Consumer 1

Agreement 1
S.T. R.A.

Agreement 2
S.T. R.A.

Application Service Provider 1

Agreement Provider 1

Application Service Provider 2

Agreement Provider 2

Appl. Service 1

Appl. Service 2

(negotiate)

(monitor)
(d

ep
en

ds
 on

)

(composes)

(invoke)

(manage)

Initiator 1
Agreement

(Consumer 2)

(Agreement Initiator 2)



47

Example Use in Enterprise:
SAP Demonstration @ TechEd

SAP demo of 3 Globus-enabled applications:
CRM: Internet Pricing & Configurator (IPC)

CRM: Workforce Management (WFM)

SCM: Advanced Planner & Optimizer (APO)

Applications modified to:
Adjust to varying demand and resources

Use Globus to discover and provision resources

Resulting in:
Lower TCO: Fewer servers & ease of use

Performance improvement



48

SAP Grid IPC Overview

IPC
Dispatcher

IPC
Server

Request:
Price Query

Delegation of
Request

Response: Pricelist
Depending on:
- Time
- Discount
- Number of Items
- …

Web Browsers / Batch Processes
(typically several thousand requests)

IPC
Server

2

2

3

1



49

Virtualized Providers

Policy

AgreementFactory

AgreementFactory

Policy

Policy

Agreement 3
S.T. R.A.

Consumer 1

Agreement 1
S.T. R.A.

Agreement 2
S.T. R.A.

Application Service Provider 1

Agreement Provider 1

Application Service Provider 2

Agreement Provider 2

Appl. Service 1

Appl. Service 2

(negotiate)

(monitor)
(d

ep
en

ds
 on

)

(composes)

(invoke)

(manage)

Initiator 1
Agreement

(Consumer 2)

(Agreement Initiator 2)



50

Future Models

Service behavioral descriptions
Unified service term model
Capture user/application requirements
Capture provider capabilities

Core meta-language
Facilitates planner/decision designs
Extends with domain concepts
Extensible negotiability mark-up

Assist discovery/brokering
Capture range of negotiability for variable terms
Capture importance of terms (required/optional)



51

Related Work

Academic Contemporaries
Condor Matchmaking
Economy-based Scheduling
Work-flow Planning

Commercial Scheduler Examples
CSF (Community Scheduler Framework)

Demonstrating WS-Agreement intermediary

Many examples for traditional sites
Expose through GRAM or native WS-Agreement support?
Platform Computing

LSF scales to lots of jobs
MultiCluster for site-to-site resource sharing

Work-flow/transaction managers



52

WS-Agreement is a Protocol

WS-Agreement is a message model…
Not a component

…applicable to previous examples
Interface standard between components
Improve interoperability of other systems
To enable composition/federation

(Previous examples:
GRAM, Condor
Workflow, economic scheduling
PBS, LSF, CSF)



53

Specifying Terms: Who and What?

In a service provisioning domain
(e.g. “computational jobs”)

A standard specifies domain terms
A provider specifies its support for

some or all of the domain standard terms
a given term, specifically

Within behavioral constraints
Within negotiability constraints
With extra fields/sub-terms
Arbitrary term properties: e.g. optional or required

A client discovers compatible providers



54

Possible GRAM Avenues

Choose a job term language (e.g. JSDL?)
Don't rush for yet another job dialect

Define a profile for terms+mark-up?
Provide an AgreementFactory impl.
Provide an Agreement impl.
Tie into existing ManagedJob resource impl.
Support both WS-GRAM, Job Agreements

Get experience without “betting the farm”

Ease migration



55

Conclusion

GRAM development is evolutionary
Following changes in service environment

Improving interaction with schedulers

Improving file staging behavior
Job management is refactored

Better separation from protocol engine
The future is getting closer

WS-Agreement

RM for more than just job submission
We want to support smooth migration


	Resource Management
	Prerequisites and Other Topics
	Session Overview
	Resource Management: Part 1
	Why the Grid?Origins: Revolution in Science
	Why the Grid?New Driver: Revolution in Business
	Common eScience/eBusiness Requirements
	Grid Resource Environment
	What Happens There?
	Non-trivial Applications
	Distributed Resource Management
	Long-term GRAM Architecture
	Traditional Schedulers
	RM Mediates Conflict
	An Open Negotiation Model
	Community Schedulers
	Intermediaries And Policy
	Heterogeneity of Service
	Reliable File Transfer
	Technical Challenges
	State of the Art
	Future: Fuzzy
	Resource Management: Part 2
	Job/Execution Duality
	Globus Toolkit GRAM Strategy
	Reasonable Applications Today
	GRAM Protocol Evolution
	GRAM Implementation Evolution
	GRAM Security Evolution
	More WS-GRAM Improvements
	WS-GRAM Approach
	Staging via RFT+gridFTP
	Explicit Credential Management
	Performance Improvements
	WS-GRAM Software Map
	WS-GRAM Base Protocol
	WS-GRAM Full Protocol
	Positioning for Future
	Co-Allocation for MPICH
	Resource Management: Part 3
	WS-Agreement
	WS-Agreement Entities
	Simple Negotiation
	Agreement-based Jobs
	Advance Reservation for Jobs
	Virtualization and Brokers
	Example Use in Enterprise:SAP Demonstration @ TechEd
	SAP Grid IPC Overview
	Virtualized Providers
	Future Models
	Related Work
	WS-Agreement is a Protocol
	Specifying Terms: Who and What?
	Possible GRAM Avenues
	Conclusion

